
ISSN 1745-8587 
B

irk
be

ck
 W

or
ki

ng
 P

ap
er

s 
in

 E
co

no
m

ic
s 

&
 F

in
an

ce
 

 
 

School of Economics, Mathematics and Statistics 

 
 

 
BWPEF 1206 

 
 
 

A Note on the Finite Sample 
Properties of the CLS Method of 

TAR Models 
 
 
 

Marian Vavra 
Birkbeck, University of London 

 
 
 
 
 
 

 
 

March 2012 

▪ Birkbeck, University of London ▪ Malet Street ▪ London ▪ WC1E 7HX ▪ 



A Note on the Finite Sample
Properties of the CLS Method of

TAR Models

Marian Vavra ∗

Department of Economics, University of London, UK

March 26, 2012

JEL classification: C15, C22, C46

Key words: threshold autoregressive model, Monte Carlo method, bias, asymmetry

Abstract

In this paper we focus on the finite sample properties of the conditional least
squares (CLS) method of threshold autoregressive (TAR) parameters under the
following conditions: (a) non-Gaussian model innovations; (b) two types of asym-
metry (i.e. deepness and steepness) captured by TAR models. It is clearly
demonstrated that the finite sample properties of the CLS method of TAR pa-
rameters significantly differ depending on the type of asymmetry. The behavior
of steepness-based models is very good compared to that obtained from deepness-
based models. Therefore, extreme caution must be exercised to preliminary mod-
elling steps, such as testing the type of asymmetry before estimating TAR models
in practice. A mistake in this phase of modelling can, in turn, give rise to very
problematic results.

1 Introduction

There is overwhelming empirical evidence in the literature that many economic variables

do exhibit some form of asymmetry and/or non-linearity.1 As a result, many interesting

∗Correspondence to: Marian Vavra, Department of Economics, University of London, Malet Street,
WC1E 7HX, London, UK. E-mail: marian.vavra@gmail.com

1See, for example, Neftci (1984), Sichel (1989, 1993), Verbrugge (1997), Razzak (2001), Tiao and
Tsay (1994) and Potter (1995), Peel and Speight (1998a,b), among others.
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non-linear time series models have been proposed in the literature.2 Threshold autore-

gressive (TAR) models, proposed by Tong and Lim (1980), are one particular class of

regime-switching models, which has become very popular in time series econometrics.

Hansen (2011) provides a survey of 75 TAR model applications in macroeconomics

and finance. Although the limiting properties of the estimated TAR parameters are

nowadays well established, Kapetanios (2000) showed that the conditional least squares

(CLS) method performs quite poorly in finite samples, especially for the threshold pa-

rameter. Norman (2008) demonstrated that a bias of the threshold parameter is related

with allocation of observations into individual regimes.3 In addition, Coakley et al.

(2003) discussed computational aspects of the CLS method. The main task of this

short note is to extend the previous results and assess the finite sample properties of

the CLS method of TAR parameters under the following conditions: (a) non-Gaussian

model innovations; (b) two types of asymmetry (i.e. deepness and steepness) captured

by TAR models.

The paper is organized as follows. A brief description of the CLS method is given in

Section 2. Monte Carlo setup and results are presented in Sections 3 and 4.

2 Threshold autoregressive models

Without loss of generality, we consider a 2-regime TAR model with a symmetric lag

structure, denoted as TAR(2; p, p). The model is formally written as follows

Xt = φ′
1Xt−1I(Xt−d ≤ c) + φ′

2Xt−1I(Xt−d > c) + εt, (1)

where {εt : t ∈ Z} is a sequence of IID(0,σ2) model innovations; d is the delay parame-

ter; Xt−1 = (1, Xt−1, . . . , Xt−p)
′ denotes a (p+1× 1) vector of predetermined variables;

φi = (φi0, φi1, . . . , φip)
′ denotes a (p + 1 × 1) vector of unknown parameters for the

regime i ∈ {1, 2}. Chen and Tsay (1993) derive a stationarity condition for higher-

order TAR models, which is similar to that for linear AR(p) models. The derivation of

basic moments of TARMA models is discussed in Amendola et al. (2006).

A convenient way to estimate a TAR model defined in (1) is to apply a sequential con-

ditional least squares (CLS) method, which is based on the fact that for pre-determined

lag order p, the delay parameter d, and the fixed threshold parameter c, the model is

2See Hamilton (1989) for Markov switching autoregressive (MSAR) models; Tong and Lim (1980)
for threshold autoregressive (TAR) models; Teräsvirta (1994) for smooth transition autoregressive
(STAR) models, Wong and Li (2000) for mixture autoregressive (MAR) models.

3To be precise, a bias is positively correlated with the average percentage of observations in the
upper regime.
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linear in remaining parameters. The estimate of φ = (φ′
1, φ

′
2)
′ can be obtained by the

CLS as follows

φ̂(c) =

(
T∑

t=1

Xt(c)Xt(c)
′

)−1( T∑
t=1

Xt(c)Xt

)
,

where Xt(c) = (X′
tI(Xt−d ≤ c),X′

tI(Xt−d > c))′ and the notation φ̂(c) indicates that

the estimate is conditional on the pre-specified threshold value c. The corresponding

(conditional) residual variance is defined as

σ̂2(c) =
1

T

T∑
t=1

(Xt − φ̂(c)′Xt(c))
2.

The CLS estimate of the threshold parameter c is obtained by minimizing the (condi-

tional) residual variance σ̂2(c) using a grid search, that is

ĉ = argmin
c∈C

σ̂2(c),

where C = [ξk1 , . . . , ξk2 ] is a compact set, ξk is a particular sample quantile set in such

a way to ensure the sufficient number of observations in each regime.

Under relatively mild conditions4, it can be shown that the limiting distribution of the

AR parameters of a TAR model is normal, yet the limiting distribution of the threshold

parameter c depends on whether a TAR model is continuous or not. In the continuous

case, the limiting distribution of the threshold parameter is normal as well, whereas in

the discontinuous case, the limiting distribution is a complicated compounded Poisson

distribution, see Chan (1993). Although the limiting properties of estimated parameters

of a TAR model by the CLS method are known, their finite sample properties are

problematic. Kapetanios (2000) shows that the CLS method performs quite poorly in

finite samples, especially in the case of the threshold parameter c.

3 Monte Carlo setup

Although there is very likely no uniformly correct way to specify the setup of Monte

Carlo experiments, the results based on simple first-order TAR models with Gaussian

innovations might be of the limited applicability for empirical research. For this rea-

son, the Monte Carlo setup in this paper is based on empirically estimated TAR models

capturing two different types of asymmetry/non-linearity (i.e. deepness and steepness)

4See Condition 1 – 4 in Chan (1993, p. 522-523).
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usually observed in economic time series.5 It is assumed that a given economic vari-

able yt can be decomposed into a trend component τt and a cyclical component xt such

that: yt = τt+xt.
6 TAR models based on cyclical component xt capture deepness, while

TAR models based on first differences ∆yt capture steepness. The deepness-based TAR

models are denoted as “D” models, whereas the steepness-based models are denoted as

“S” models, see Table 1.7 Figure 1 depicts the cyclical component xt and the growth

rates ∆yt of the US real GDP series.

The finite sample properties of the CLS estimator are examined based on various dis-

tributions of innovations. In particular, apart from a standard normal distribution,

which serves as a benchmark for comparison, we consider model innovations χ2(5) and

t(5) distributions.8 All model innovations are standardized to have zero mean and unit

variance.

Table 1: Empirical TAR models used in Monte Carlo experiments

D1:

xt =

{
−0.4 + 0.68xt−1 + 0.17xt−2 + εt for xt−1 ≤ −1.8,

1.40xt−1 − 0.45xt−2 + εt for xt−1 > −1.8,

from Peel and Speight (1998b, p. 329) fitted to real German GDP.

D2:

xt =

{
−1.37 + 1.30xt−1 − 0.61xt−2 + εt for xt−1 ≤ −2.2,

0.10 + 1.10xt−1 − 0.18xt−2 + εt for xt−1 > −2.2,

from Peel and Speight (1998b, p. 329) fitted to real US GNP.

S1:

∆yt =

{
−0.59− 1.20∆yt−1 + 0.52∆yt−2 + εt for ∆yt−1 ≤ −0.10,

0.57 + 0.22∆yt−1 + εt for ∆yt−1 > −0.10,

from Peel and Speight (1998b, p. 330) fitted to real German GDP.

5For example, Verbrugge (1997) examines 11 US economic time series. He concludes that 8 time
series exhibit statistically significant deepness, 6 time series steepness, and 4 series both.

6The cyclical component xt is often extracted by some band-pass filter.
7Note that higher order TAR models were transformed into the form of TAR(2;2,2) for the purpose

of Monte Carlo experiments.
8Note that: (i) if ε ∼ t(5) then the coefficient of skewness is 0.0 and the coefficient of kurtosis is

9.0; (i) if ε ∼ χ2(5) then the coefficient of skewness is 1.3 and the coefficient of kurtosis is 5.4. We
consider only χ2(5) with positive skewness to ensure the sufficient number of observations in the lower
(recession) regime.
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S2:

∆yt =

{
−0.39 + 0.44∆yt−1 − 0.79∆yt−2 + εt for ∆yt−1 ≤ 0.0,

0.38 + 0.31∆yt−1 + 0.20∆yt−2 + εt for ∆yt−1 > 0.0,

from Tiao and Tsay (1994, p. 113) fitted to real US GDP.

Note: xt denotes the cyclical component used for modelling deepness, whereas ∆yt

represents the growth rates used for modelling steepness.

Originally, T+100 observations are simulated in each experiment, but the first 100

of them are discarded to eliminate the effect of initial observations. The number of

repetitions in all experiments is set to R = 2, 000, and the number of observations is

set to T ∈ {100, 300, 500}. We follow a conventional assumption that the lag order

p and the delay parameter d of TAR models are both known, whereas the threshold

parameter is estimated via a 100-point grid search with the set C = [ξ0.1, . . . , ξ0.9].
9

Following arguments in Coakley et al. (2003), the CLS method is based on the QR

factorization.

4 Monte Carlo results

The following quantities about the estimated TAR parameters are considered:

bias =
1

R

R∑
r=1

(ξ̂r − ξ),

‘bias” stands for the average bias of the estimated parameter, say, ξ̂ calculated over all

replications;

mse =
1

R

R∑
r=1

(θ̂r − θ)2,

“mse” denotes a mean square error of the estimated parameter calculated over all

replications;

jb = sk2/6 + (kt− 3)2/24,

9As the parameter space of the delay parameter d is discrete, the CLS estimate is super-consistent,
and thus d can be consider as known once the switching variable is identified. For this reason, a grid
search over the delay parameter d is not considered in this paper.
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“jb” denotes the Jarque-Bera test statistic, and sk and kt are sample coefficients of

skewness and kurtosis calculated from estimated parameter over all replications;

π =
1

R

R∑
r=1

πr,

denotes the average proportion of observations lying in the lower (i.e. recession) regime

over all replications, where πr = T−1
∑T

t=1 I(zt < c);

q =
1

R

R∑
r=1

qr,

q stands for the average percentage regime mismatch calculated aver all replications,

where qr = T−1
∑T

t=1 I(zt < c)− I(zt < ĉ))2. The p-values of the Jarque-Bera test are

presented in tables below.

4.1 Bias

The Monte Carlo results are presented in Table 2. The results suggest the following.

The bias of the threshold parameter c and regime constants φi0 of deepness-based TAR

models (D1,D2) are significantly larger compared to those of steepness-based TAR mod-

els (S1,S2). For example, the bias of the threshold parameter of deepness-based models

are 0.94 and 1.21 compared to 0.13 and -0.07 for steepness-based models in the sample

T = 100 and using Gaussian innovations. Moreover, it is worth noting that the bias

of key TAR parameters is not directly related to the number of observations allocated

in individual regimes, as claimed by Norman (2008), but rather to the persistence of

the switching (indicator) function. For example, D2 and S1 models have a very similar

allocation of observations in regimes10, but the bias of the deepness-based model (D2)

is larger by the factor 10 compared to the bias of the steepness-based model (S1). The

reason for that lies not in the proportion of observations allocated in individual regimes,

but rather in the persistence of the switching (i.e. indicator) function, see Figures 2-3,

where examples of switching (indicator) functions and their sample autocorrelations of

all four DGPs are depicted. Our findings reveal that the higher the persistence of the

switching function, the higher the probability of a regime mismatch, and subsequently

the higher the bias of the threshold parameter c. This fact makes the deepness-based

models very problematic in small samples.

*** Insert Table 2 around here ***

*** Insert Figure 1 and 2 around here ***

10A probability of the process being in the lower (recession) regime is approximately 25 %.
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It is also interesting to note that steepness-based TAR models do not exhibit any

significant sensitivity on the specification of model innovations regardless the sample

size and the setup of the CLS method, whereas deepness-based TAR models are much

more sensitive. However, it is interesting to note that the CLS method produces smaller

or equal bias of the TAR parameters in approximately 80 % of the cases, provided that

innovations are drawn from a non-Gaussian but symmetric distribution (i.e. t(5)), and

in approximately 60 % of the cases, provided that innovations are non-Gaussian but

asymmetric (i.e. χ2(5)).

4.2 Mean square error

The mean square errors (MSE) of the estimated TAR parameters are presented in

Table 3. Since the MSE of the estimated TAR parameters is significantly affected by

the bias of a given TAR parameter, the bias and MSE results are very similar. Again, we

can observe a large difference between MSE of deepness-based and steepness-based TAR

models. For example, the MSE of the threshold parameter c od steepness-based models

is less than 0.25 in the smaple T = 100, but more than 4.9 for deepness-based models.

Similar results are observed for other TAR parameters, especially regime constants in

monor regimes, see Table 3. Moreover, very interesting finding is that the MSE of the

deepness-based models is very sensitive on the specification of model innovations. For

example, the MSE of the regime constant φ10 of the deepness-based TAR model D1

is 0.62 for Gaussian innovation, 1.67 for t innovations, even 2.59 for χ2 innovations in

the sample T = 500, see top-right panel of Table 3. Rather surprisingly, no similar

sensitivity is observed for steepness-based TAR models regardless of the sample size.

*** Insert Table 3 around here ***

4.3 Normality

The Monte Carlo results are presented in Table 4. Using the standard Jarque-Bera test,

normality of the estimated TAR parameters is clearly rejected in 100 % of the cases in

the sample T = 100 at 5 % significance level, and in 70 % of the cases for the sample

T = 300 for all DGP configurations (D1, D2, S1, S2) and model innovations (N(0, 1),

t(5), χ2(5)). However, large differences can be observed again between deepness-based

and steepness-based TAR models. For example, for the former TAR model, normality

is rejected in 95 % of the cases, whereas only in 40 % in the latter one in the sample

T = 500 and at 5 % significance level. This finding clearly documents how much

different the properties of the estimated TAR parameters from deepness-based and

steepness-based models can be. Moreover, it can be concluded that rejecting normality

is affected by the allocation of observations into individual regimes, see results for both
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steepness-based models (S1 and S2) in Table 4. Loosely speaking, normality is very

likely to be rejected for TAR parameters related to a minor regime.

*** Insert Table 4 around here ***

5 Conclusion

It is shown that the finite sample properties of the CLS method of TAR parameters

significantly differ depending on the type of asymmetry. Our results clearly indicate

that steepness-based TAR models produce relatively small bias and MSE, which are

significantly reduced with the increasing sample size. Both quantities are insensitive to

a distribution of TAR innovations. Moreover, it is shown that the limiting distribution

of steepness-based TAR parameters is a relatively good approximation in the smaples

T ≥ 500. Unfortunately, no one from the above properties holds for the deepness-based

TAR parameters. Therefore, extreme caution must be exercised to preliminary mod-

elling steps, such as testing a particular type of asymmetry. A mistake in this phase of

modelling can, in turn, give rise to completely different, and rather problematic, results.
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Figure 1: Example of the real US GDP series
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Note: The cyclical component xt is extracted/calculated using the following three filters: the (sym-
metric) Baxter-King filter, the (asymmetric) Christiano-Fitzerald filter, and Hodrick-Prescott filter.
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Figure 2: Examples of switching (indicator) functions of TAR models: T = 100
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Figure 3: Examples of sample autocorrelations of switching (indicator) functions of
TAR models: T = 100
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Table 2: Finite sample properties of the CLS method: bias

T=100 T=300 T=500
model params. N(0, 1) t(5) χ2 N(0, 1) t(5) χ2 N(0, 1) t(5) χ2

D1 φ10 -0.63 -0.69 -0.82 -0.45 -0.42 -0.50 -0.23 -0.22 -0.32
φ11 -0.04 -0.06 -0.13 -0.11 -0.09 -0.12 -0.06 -0.05 -0.08
φ12 -0.27 -0.27 -0.26 -0.04 -0.04 -0.05 -0.01 -0.02 -0.01
φ20 0.21 0.17 0.19 0.03 0.02 0.04 0.01 0.01 0.01
φ21 -0.05 -0.04 -0.05 -0.01 -0.01 -0.01 0.00 -0.01 -0.01
φ22 -0.02 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
c 0.94 0.93 0.76 -0.10 -0.14 -0.17 -0.10 -0.13 -0.19
π 0.19 0.17 0.18 0.19 0.19 0.18 0.19 0.18 0.19
q 0.17 0.18 0.15 0.04 0.03 0.04 0.02 0.02 0.02

D2 φ10 0.26 0.28 0.37 -0.06 -0.06 -0.07 -0.04 -0.04 -0.07
φ11 -0.09 -0.08 -0.11 -0.01 0.00 -0.01 0.00 0.00 -0.01
φ12 0.08 0.07 0.08 -0.01 -0.01 -0.02 -0.01 -0.01 -0.01
φ20 0.21 0.17 0.33 0.03 0.02 0.04 0.01 0.01 0.01
φ21 -0.06 -0.05 -0.07 -0.01 -0.01 -0.01 -0.01 -0.01 0.00
φ22 -0.04 -0.03 -0.03 -0.01 -0.01 0.00 0.00 0.00 0.00
c 1.21 1.17 1.33 0.13 0.01 0.07 0.00 -0.01 0.00
π 0.29 0.26 0.22 0.28 0.27 0.23 0.28 0.28 0.24
q 0.18 0.18 0.19 0.03 0.02 0.02 0.01 0.01 0.01

S1 φ10 0.06 0.06 0.03 0.00 0.00 0.00 0.01 0.00 0.01
φ11 0.04 0.04 0.03 -0.01 -0.01 0.00 0.00 0.00 0.01
φ12 -0.03 -0.03 0.01 0.00 -0.01 -0.01 -0.01 -0.01 -0.01
φ20 0.11 0.09 0.10 0.02 0.01 0.01 0.00 0.00 0.00
φ21 -0.05 -0.04 -0.03 -0.01 -0.01 -0.01 0.00 0.00 0.00
φ22 -0.03 -0.03 -0.04 -0.01 -0.01 -0.01 0.00 0.00 0.00
c 0.13 0.09 0.08 0.00 -0.01 0.00 0.00 0.00 0.00
π 0.24 0.22 0.31 0.25 0.22 0.32 0.25 0.22 0.31
q 0.08 0.07 0.07 0.01 0.01 0.01 0.01 0.01 0.01

S2 φ10 -0.04 -0.07 -0.03 -0.01 -0.01 0.00 0.00 0.01 0.01
φ11 -0.02 -0.03 0.00 -0.01 -0.01 0.00 0.00 0.00 0.01
φ12 -0.04 -0.05 -0.07 -0.01 -0.01 -0.02 0.00 0.00 0.00
φ20 0.02 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00
φ21 -0.02 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
φ22 -0.02 -0.03 -0.03 -0.01 -0.01 -0.01 -0.01 -0.01 0.00
c -0.07 -0.07 -0.05 -0.01 -0.01 -0.01 0.00 0.00 0.00
π 0.32 0.29 0.31 0.31 0.28 0.31 0.31 0.28 0.31
q 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.01 0.01

* “bias” stands for the average bias, “mse” denotes a mean squared error.
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Table 3: Finite sample properties of the CLS method: mse

T=100 T=300 T=500
model params. N(0, 1) t(5) χ2 N(0, 1) t(5) χ2 N(0, 1) t(5) χ2

D1 φ10 2.60 3.25 5.31 1.68 1.90 4.56 0.62 1.67 2.59
φ11 0.27 0.31 0.67 0.14 0.11 0.38 0.04 0.09 0.21
φ12 0.21 0.21 0.40 0.06 0.05 0.16 0.02 0.02 0.09
φ20 0.77 0.98 0.54 0.10 0.13 0.19 0.00 0.07 0.01
φ21 0.05 0.07 0.03 0.01 0.01 0.01 0.00 0.00 0.00
φ22 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00
c 4.95 4.67 4.13 0.89 0.84 1.24 0.28 0.25 0.43

D2 φ10 1.71 2.54 3.08 0.39 0.73 0.81 0.11 0.09 0.55
φ11 0.11 0.16 0.37 0.02 0.03 0.06 0.01 0.01 0.03
φ12 0.08 0.09 0.17 0.02 0.02 0.03 0.01 0.01 0.02
φ20 1.27 1.54 1.34 0.24 0.22 0.14 0.01 0.00 0.02
φ21 0.09 0.11 0.05 0.01 0.01 0.01 0.00 0.00 0.00
φ22 0.04 0.04 0.02 0.01 0.01 0.00 0.00 0.00 0.00
c 7.18 6.41 6.83 1.08 0.60 0.84 0.11 0.08 0.20

S1 φ10 0.38 0.35 0.36 0.05 0.04 0.03 0.02 0.13 0.02
φ11 0.35 0.29 0.65 0.05 0.04 0.07 0.03 0.06 0.04
φ12 0.08 0.12 0.23 0.02 0.02 0.03 0.01 0.01 0.02
φ20 0.71 0.22 0.30 0.02 0.01 0.03 0.01 0.01 0.01
φ21 0.14 0.05 0.05 0.01 0.01 0.01 0.00 0.00 0.00
φ22 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00
c 0.22 0.15 0.15 0.01 0.01 0.01 0.00 0.00 0.00

S2 φ10 0.22 0.35 0.43 0.04 0.04 0.04 0.02 0.02 0.02
φ11 0.10 0.13 0.23 0.02 0.02 0.04 0.01 0.01 0.02
φ12 0.05 0.07 0.12 0.01 0.01 0.02 0.01 0.01 0.01
φ20 0.06 0.05 0.05 0.01 0.01 0.01 0.01 0.01 0.01
φ21 0.03 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00
φ22 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
c 0.04 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00

* “bias” stands for the average bias, “mse” denotes a mean squared error.
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Table 4: Finite sample properties of the CLS method: normality

T=100 T=300 T=500
model params. N(0, 1) t(5) χ2 N(0, 1) t(5) χ2 N(0, 1) t(5) χ2

D1 φ10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
φ11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
φ12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
φ20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
φ21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
φ22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D2 φ10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
φ11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
φ12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
φ20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
φ21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00
φ22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00
c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S1 φ10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
φ11 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00
φ12 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.00 0.00
φ20 0.00 0.00 0.00 0.00 0.02 0.00 0.07 0.69 0.05
φ21 0.00 0.00 0.00 0.03 0.21 0.00 0.25 0.43 0.47
φ22 0.00 0.00 0.00 0.61 0.47 0.00 0.02 0.47 0.66
c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S2 φ10 0.00 0.00 0.00 0.54 0.00 0.00 0.51 0.08 0.30
φ11 0.00 0.00 0.00 0.69 0.00 0.00 0.20 0.04 0.19
φ12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.02
φ20 0.00 0.00 0.00 0.00 0.13 0.00 0.94 0.34 0.21
φ21 0.00 0.00 0.00 0.62 0.66 0.00 0.20 0.61 0.44
φ22 0.00 0.00 0.00 0.17 0.93 0.17 0.62 0.27 0.69
c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

* “bias” stands for the average bias, “mse” denotes a mean squared error.
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